Short communication

The sex of the fetus affects maternal blood glucose concentrations in overweight and obese pregnant women

Sumudu N Seneviratne1,2; José G B Derraik1; Yannan Jiang3; Lesley M E Mccowan4,5; Silmara Gusso1; Wayne S Cutfield1,5; Paul L Hofman1,5*

1 Liggins Institute, University of Auckland, Auckland, New Zealand
2 Department of Paediatrics, Faculty of Medicine, University of Colombo
3 Department of Statistics, University of Auckland, Auckland, New Zealand
4 Department of Obstetrics and Gynaecology, South Auckland Clinical School and Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
5 Gravida: National Centre for Growth and Development, Auckland, New Zealand
*Author for correspondence: Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand; email: p.hofman@auckland.ac.nz; ph: +64.9.923.6453; fax: +64.9.373.8763

Short title: Fetal sex & maternal metabolism

Keywords: maternal; metabolism; cord blood; pregnancy; obesity; fetus.
INTRODUCTION

Pregnancy is a critical time period, when numerous factors may alter maternal and/or fetal metabolism (e.g. King, 2006, Godfrey & Barker, 2000). There is increasing evidence that the short- and long-term effects of intrauterine stressors on the offspring vary according to sex (Gabory et al., 2013). However, there is also increasing evidence that the sex of the fetus may in turn affect the maternal environment, and a number of recent studies have shown that fetal sex may alter the maternal metabolic milieu during pregnancy (Jaskolka et al., 2015, Retnakaran et al., 2015, Retnakaran & Shah, 2015, Sheiner et al., 2004, Walsh et al., 2015, Xiao et al., 2014). Thus, following a randomized controlled trial of exercise in overweight and obese pregnant women (Seneviratne et al., 2016), we aimed to assess whether fetal sex was associated with changes in maternal metabolism.

METHODS

The IMPROVE (Improving Maternal and Progeny Obesity via Exercise) trial was a parallel two-arm randomised controlled trial of exercise in overweight and obese pregnant women in New Zealand (Seneviratne et al., 2016). Ethics approval was obtained from the Health and Disability Ethics Committee. Participants were non-smoking pregnant women aged 18–40 years with a BMI ≥25 kg/m² and a singleton pregnancy ≤20 weeks of gestation. Exclusion criteria included multiple pregnancy and pre-existing contraindications to antenatal exercise.

Assessments were performed at baseline (19 weeks of gestation) and post-intervention (36 weeks). Venous blood was collected in a non-fasting resting state, at an average of 2.8 and 2.6 hours post meal at 19 and 36 weeks of gestation, respectively. Cord blood was collected at birth by delivery staff. Pre-specified metabolic markers assessed included glucose, leptin, interleukin-6, tumour necrosis factor alpha and highly-sensitive C-reactive protein. Maternal chronic glycaemia was assessed by glycated haemoglobin (HbA1c), while maternal sex hormone binding globulin (SHBG) and insulin-like growth factor binding protein 1 (IGFBP-1) were used as surrogate measures of insulin resistance.

Simple two-sample tests were used to compare demographic characteristics between mothers of male or female fetuses. Associations between fetal sex and study outcomes at 19 and 36 weeks of gestation were assessed using generalised linear regression models, adjusting for
maternal parity, age, and BMI (as well as trial allocation group for the later period). Similar models were used to examine possible effects on cord blood parameters. Maternal data were also examined across pregnancy using repeated measures analysis. Based on our baseline data, our sample size was powered to detect differences between groups in maternal glucose, HbA1c, and SHBG levels of 0.61 mmol/l, 0.17%, and 74 mmol/l, respectively (with α=0.05 and 80% power); noting however, that the statistical power was increased by adjustment for important confounders.

RESULTS

Data were analysed on the 74 randomized participants who completed the trial (Seneviratne et al., 2016). Mothers carrying male (n=38) and female (n=36) fetuses had similar demographic characteristics, with no significant differences in age, BMI, ethnic composition, and dietary intake (data not shown), or rates of gestational diabetes (8% per group).

At 19 weeks of gestation, mothers carrying female fetuses had higher blood glucose concentrations than those carrying males (5.4 vs 4.9 mmol/l; p=0.046) (Figure 1). At 36 weeks of gestation, differences were more marked, with blood glucose concentrations being 15% higher in mothers of female fetuses (5.7 vs 5.0 mmol/l; p=0.004) (Figure 1). Repeated measures analysis confirmed this gender difference across pregnancy (5.6 vs 4.9 mmol/l; p=0.002). Interestingly, maternal glucose concentrations at 19 weeks of gestation were positively correlated with offspring birth weight SDS (r=0.28; p=0.024) across the whole cohort, but not at 36 weeks of gestation. This association persisted in multivariable models adjusting for confounders (β=0.311; p=0.030).

There were no differences in maternal concentrations of SHBG, IGFBP-1, HbA1c, but mothers carrying females had higher concentrations of high-sensitivity CRP (5.0 (95% CI 4.0–6.2) vs 3.6 (95% CI 2.9–4.5); p=0.029). Note that the time elapsed between the last meal and blood test was similar between sexes at baseline (p=0.59) and post-intervention (p=0.88). Further, results were largely unaffected by the addition of this time parameter into multivariable models (data not shown). There were no differences in cord blood parameters according to fetal sex (data not shown).
DISCUSSION

This study showed that among overweight or obese mothers, those carrying female fetuses had higher blood concentrations of glucose (particularly in late gestation) and an inflammatory marker (hs-CRP). However, we did not observe differences in markers of insulin resistance.

These data add to the current conflicting evidence. Previously, it has been shown that women carrying male fetuses were more insulin resistant (Walsh et al., 2015) and more likely to develop gestational diabetes (Jaskolka et al., 2015, Retnakaran et al., 2015, Retnakaran & Shah, 2015, Sheiner et al., 2004). In contrast, Xiao et al. recently showed greater insulin resistance in mothers carrying a female fetus (Xiao et al., 2014), while (Retnakaran & Shah, 2016) observed that, among women who had gestational diabetes, those carrying a girl had a higher risk of developing type 2 diabetes later on.

Our findings provide further evidence that the sex of the fetus appears to influence maternal metabolism, but we found no differences in cord blood metabolic parameters. Although the effects of fetal sex on the long-term health of the mother are still unknown, these are likely to occur via the described association with maternal glycaemia and gestational diabetes risk, since the latter is associated with at least a seven-fold increased risk of developing type 2 diabetes mellitus in the future (Bellamy et al., 2009). Nonetheless, the mechanisms underpinning the observed effects of fetal sex on maternal metabolism are unclear, but they may be associated with alterations on maternal β-cell function during pregnancy (Retnakaran et al., 2015). As the reasons for the conflicting data in the literature are also unknown, further investigation in this area is required.

Declaration of interest: This study was supported by Gravida: National Centre for Growth and Development (New Zealand). The authors have no financial or non-financial interests to declare that may be relevant to this submitted work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
REFERENCES

Xiao L, JP Zhao, AM Nuyt, WD Fraser, ZC Luo 2014. Female fetus is associated with greater maternal insulin resistance in pregnancy. Diabetic Medicine, 31: 1696-1701.
Figure 1. Differences in blood glucose concentrations in mothers of male (black; n=38) and female (gray; n=36) fetuses at 19 and 36 weeks of gestation. Data are means and 95% confidence intervals, adjusted for maternal age, BMI, and parity (as well as trial allocation group for the later period).